DE ELIMINACIÓN DE PFAS EN AGUA DE CONSUMO HUMANO

Delia M. Andries

Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid

Kurt Schwabe, Lucia De Stefano, Alberto Garrido

Con el apoyo de:

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Seminario Observatorio del Agua F. Botín y DAQUAS Madrid, 9 de octubre 2025

- 1. INTRODUCCIÓN Y ESTADO DE LA CUESTIÓN
- 2. CONSIDERACIONES SOBRE EL CÁLCULO DE COSTES
- 3. COSTES DE MITIGACIÓN
- 4. ASEQUIBILIDAD DEL GASTO PARA EL CONSUMIDOR
- 5. REFLEXIONES

...... California State Water Project Selected PWA $\overline{B}ay$ Metropolitan Area Other canals and aqueducts Public Water Agencies (PWA) Bay Area Inland Empire 100 km

ESTADO DE LA CUESTIÓN

- 21 millones de personas en el sur del estado
- Segunda área metropolitana más grande del país
- 400 operadores sirven al 90% de la población
- Agua subterránea como recurso estratégico en sequía
- 7.400 hm³/año dedicados a uso residencial y comercial
- ~29,5% es agua de consumo producida de agua subterránea bajo sospecha de PFAS
- Prevalencia de PFAS en subterráneas
- Regulación federal (2024) y estatal (2020), compuestos individuales
- Obligación de recuperar costes

...... California State Water Project Selected PWA $\overline{B}ay$ Metropolitan Area Other canals and aqueducts Public Water Agencies (PWA) Bay Area Inland Empire 100 km

ESTADO DE LA CUESTIÓN

Planta de filtración de PFAS en Yorba Linda Water District, Orange County, CA. La mayor de Estados Unidos, inaugurada en 2024, con capacidad de ~3800 m³/h.

Esfuerzos de mitigación ya en curso. Diferentes tecnologías en uso:

- Carbón activo (granular activated charcoal, GAC)
- Intercambio iónico (ion exchange, IX)
- Mezclar agua tratada para PFAS con agua no tratada para cumplir con la regulación en el punto de distribución

¿Cuál es el coste de todo esto?

CONSIDERACIONES SOBRE COSTES

1. Regulaciones

- Maximum Concentration Level (MCL) / Valor paramétrico
- Tipo de PFAS
- ¿Sumas de PFAS vs compuestos individuales?

2. Eliminación de material

- Incineración
- Vertedero

Permisos especiales, responsabilidad en caso de fugas...

3. Agua bruta

- Superficial y subterránea con diferentes requerimientos
- Co-contaminantes

Competencia por el sitio de unión → Mayor tasa de recambio → Costes de operación y mantenimiento mayores

Elección de tecnología

CONSIDERACIONES SOBRE COSTES

Coste de producción nuevo será el coste actual + el coste de mitigación

Cifras referidas a acre-pie. 1 acre-pie = 1.233 m³

Este coste no se aplicará a toda el agua potable producida

Parte se mezcla con agua que no requiere tratamiento

GAC

Definido por la concentración deseada

	PFAS CERO	85% EPA	50%	Nuevas
			regulaciones CA	regulaciones CA
	Scenario 1 (PPT)	Scenario 2 (PPT)	Scenario 3 (PPT)	Scenario 4 (PPT)
PFOA	0	3.7	2.05	4
PFOS	0	3.7	3.25	4
PFHxS	0	8.5	1.5	3
PFHxA	0	Unregulated	Unregulated	1
HFPO-DA	0	8.5	10 (USEPA)	10 (USEPA)
PFNA	0	8.5	8.5	19
PFBS	0	1,700	250	500

Relación entre coste de producción y el gasto por hogar (determinado por el tamaño del operador, estructura tarifaria, fuente de abastecimiento)

COSTES

450\$/1.233 m³ en el escenario más severo (S1), usando GAC

220\$/1.233 m³ en el escenario más probable (GAC) o 150\$/1.233 m³ (IX)

Operadores dependientes de subterránea los más afectados

En un consumo de 36 m³ al mes, eso se traduce en un aumento del gasto de 30\$ a 50\$

ASEQUIBILIDAD DEL GASTO

¿Quién puede permitirse el aumento de gasto?

El cálculo de asequibilidad difiere según si se usa la mediana de los ingresos o el 20º percentil

Operadores afectados PFAS de cadena larga, pero PFHxA preocupa en el escenario más plausible (S4), especialmente en agua potable proveniente de subterráneas

REFLEXIONES

- ◆ La mitigación de PFAS en aguas urbanas es un tema complejo que depende de las particularidades de cada operador
- Regulaciones más estrictas llevan a costes más altos, pero es especialmente preocupante el caso de PFAS "emergentes", como PFHxA

450\$/1.233 m³ en producción 50\$/36 m³ al mes en la factura

- ¿Es posible gestionar los stocks ambientales de PFAS sólo a través de soluciones a final de tubería que, en muchos casos, tendrán que ser financiadas por los consumidores?
- ◆ Dentro de las particularidades de cada operador: la estructura socioeconómica de sus clientes, donde no todos se pueden permitir dedicar más % de su ingreso a la factura del agua

AGRADECIMIENTOS

Al Dr. Mehdi Nemati, de la Universidad de California, Riverside, por su apoyo en la modelización.

A la Division of Drinking Water de la State Water Resources Control Board y a los numerosos operadores que entrevisté, por el *feedback* recibido.

