

Avances en la regulación internacional de PFAS

Respuesta global a un problema global

Coordinación de Tratamiento de Aguas

Avances en la regulación internacional de PFAS

1. Empecemos por el principio.

Los fundamentos.

2. Organismos supranacionales

OMS, OCDE, Convenio Estocolmo.

3. Europa

Mecanismos activados.

4. Ejemplos Países OCDE

Qué ocurre en otros países.

5. METODOLOGÍA OMS

Cómo se regula.

6. CONCLUSIONES.

1 Empecemos por el principio (o por los PRINCIPIOS)

¿Qué son los PFAS?

"Sabes que eres verdaderamente famoso cuando hacen una película sobre tu vida... y tú, aún, estás vivo para verla." G. Clooney

Si además tienes un apodo y...

te lo encuentras hasta en la sopa.

No son sustancias de preocupación.

Son sustancias de ocupación

Principios de la política ambiental

Precaución y prevención.

- 1. PRC: Actuar ante riesgos ambientales incluso con incertidumbre científica, (UE, Australia, Canadá)
- PRV: Evitar daños ambientales antes de que ocurran. (UE, EEUU, Japón, Canadá, Australia)

Corrección en origen.

- 1. Corregir los daños ambientales en el **origen**.
- La mayor parte de los países (EEUU) no lo mencionan explícitamente. Europa: REACH

Quien contamina paga.

- El contaminador debe asumir los costos de reparación (UE, Canadá).
- 2. Japón (1972): Compensación, incluso sin culpa directa.
- 3. Responsabilidad legal (EEUU, Australia).

Innovación.

Promoción activa de soluciones nuevas y eficaces

Principio que debe convivir con otros principios que prevalecen.

2 Organismos supranacionales

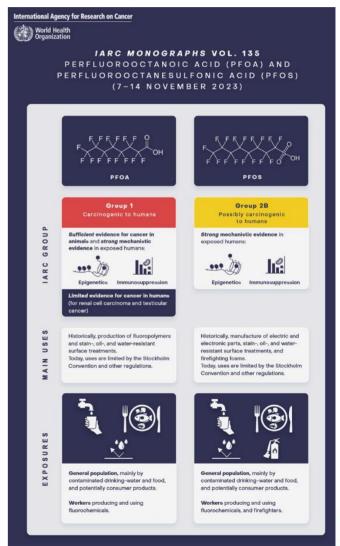
Organización Mundial de la Salud

Drinking Water Guidelines 4th Ed. Adenda 1 y 2. Borrador 3.

- Edición actual no contempla PFAS.
- Borrador Adenda 3
 - Propone Valor Guía (PFOA y PFOS) 100 ng/L,
 - No es viable bajar el valor en países con recursos limitados.
 - Publicación prevista: 2022-2023.
- Es de preocupación por
 - **Ubicuidad** en medioambiente y en seres vivos.
 - Exposición.
 - Efectos sobre la salud: baja nivel anticuerpos, alterador endocrinos.
- Criticado por descartar de forma sistemática estudios relevantes :
 - No establece valores guía basados en la protección de la salud.
 - Propone valores provisionales basados en tecnología disponible.
 - Contradice las recomendaciones de EFSA/ECHA, ATSDR, EPA y CDC.

ES UN BORRADOR.

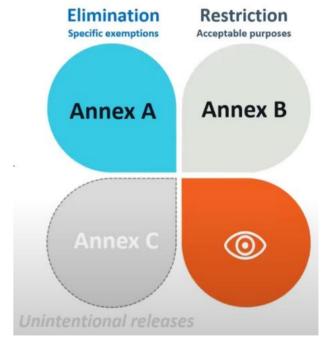
Guidelines for drinking-water quality


Fourth edition incorporating the first and second addenda

OMS-IARC: Agencia Internacional Investigación Cáncer

Monográfico 135 Reclasificación PFOS y PFOA (nov/2023).

- PFOA: Grupo 1. Carcinógeno para humanos.
- PFOS: Grupo 2B. Posiblemente carcinógeno para humanos.



Convenio de Estocolmo UN

Referente a Contaminantes Orgánicos Persistentes.

- Efectos adversos sobre la salud, persistentes, bioacumulativos, móviles:
 - PFOS: 2009
 - PFOA: 2019
 - LC-PFCA: 2025
- Anexo A- Eliminación, gestión del residuo y búsqueda de alternativas.
- Anexo B- Restricción.
- Se implementa en Europa a través de Reglamento (UE) 2019/1021 (POP).

OCDE: Organización para la Cooperación y el Desarrollo Económicos

Enfoques de gestión de riesgos y alternativas.

- Detección de alternativas a cada uno de los PFAS.
 - Sectorial (Cosmética, Recubrimientos, pinturas y barnices, espumas...).
 - Información de productos sustitutivos.
 - Herramientas: Substitution and Alternatives Toolbox (SAAToolbox).
- Métodos analíticos. Clasificación.

3 UNIÓN EUROPEA

Acciones legislativas europeas sobre PFAS

REACH restrictions: PFHxA, PFAS in fire-fighting foams...

Industrial
Emissions
Directive and
E-PRTR

POPs Regulation

F-Gas Regulation

Drinking Water Directive

Water Framework
Directive

Groundwater Directive

Environmental Quality Standards Directive

Food Contaminants Regulation

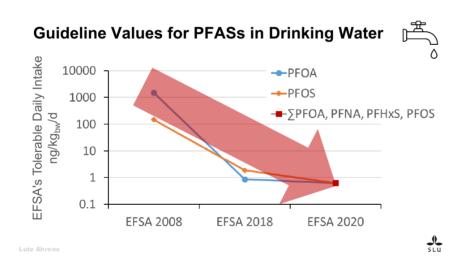
ECHA/EFSA. Alteración endocrina.

Guía ECHA/EFSA para identificación de alteradores endocrinos.

- Existen PFAS que cumplen criterio de la ECHA/EFSA DE 2018.
 - Una alteración endocrina requiere un efecto adverso, un modo de acción endocrino y un nexo causal entre ambos. Puede ser EATS o no-EATS.
- Existe efecto adverso: bajo nivel de anticuerpos, crecimiento en niños y cáncer de riñón.
- Hay evidencias de modo de acción endocrino.
- Existe un nexo causal entre ambos.

ADOPTED (ECHA): 5 June 2018
ADOPTED (EFSA): 5 June 2018

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009


PFAS	Evaluador
PFOA	EFSA, EPA, ECHA
PFOS	EFSA, EPA, ECHA
PFNA	EFSA
PFHxS	EFSA, ECHA
GenX	EPA
PFBS	EPA

EFSA. Riesgo para salud humana.

Opinión científica EFSA 9/07/2020

- Evaluación de riesgo por la presencia de PFAS en la comida.
- Ingesta semanal tolerable 4-PFAS*: Σ PFAS_{EFSA_4}=4,4 $\frac{ng}{kg_BW \cdot semana}$

SCIENTIFIC OPINION

ADOPTED: 9 July 2020 doi: 10.2903/j.efsa.2020.6223

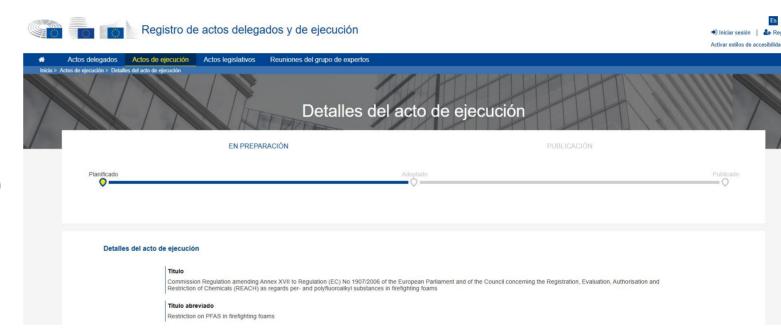
Risk to human health related to the presence of perfluoroalkyl substances in food

EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel),
Dieter Schrenk, Margherita Bignami, Laurent Bodin, James Kevin Chipman, Jesús del Mazo,
Bettina Grasl-Kraupp, Christer Hogstrand, Laurentius (Ron) Hoogenboom,
Jean-Charles Leblanc, Carlo Stefano Nebbia, Elsa Nielsen, Evangelia Ntzani, Annette Petersen,
Salomon Sand, Christiane Vleminckx, Heather Wallace, Lars Barregård, Sandra Ceccatelli*,
Jean-Pierre Cravedi, Thorhallur Ingi Halldorsson, Line Småstuen Haug, Niklas Johansson,
Helle Katrine Knutsen, Martin Rose, Alain-Claude Roudot, Henk Van Loveren, Günter Vollmer,
Karen Mackay, Francesca Riolo and Tanja Schwerdtle

Unión Europea. CE/ECHA.

Restricciones vigentes.

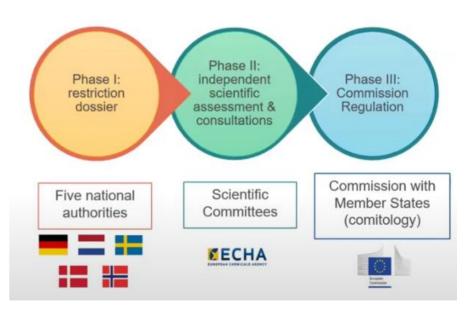
- Reglamento POP [≈convenio Estocolmo]:
 - C8 (PFOS y PFOA) y
 - C6 (PFHxS).
- REACH Anexo XVII:
 - C9-C14 (Entrada 68)
 - TDFA (Entrada 73) y
 - PFHxA (Entrada79)



Unión Europea. CE/ECHA.

Restricciones futuras.

- REACH Anexo XVII:
 - Espumas de extinción de incendios.
 - Se liberan 470 t/año de PFAS.
 - Aprobación por CARACAL (Autoridades competentes)
 - A favor: 26 Estados Miembros.
 - Abstención: 1 Estado Miembro.
 - Escrutinio de Parlamento y Consejo.
 - Adopción: Publicado 3/10/2025.
 - Productos de consumo: Retirada progresiva.


Unión Europea. CE/ECHA. U-PFAS.

Restricciones futuras. Restricción universal. U-PFAS.

- Iniciativa: DE, NL, SE, D, NO. Marco REACH (Anexo XVII).
- Cubren todos los PFAS según definición OCDE 2021 y todos sus usos.
- Más allá del Convenio de Estocolmo.
- Fase 1. Autoridades proponentes actualizan expedientes. Completada.
- Fase 2. ECHA. Comités Riesgos (RAC) y Socioeconómico (SEAC).
 - ECHA publicó evaluación científica 20/08/2025.
 - 14 sectores + fabricación y asuntos comunes. Cubre 90% emisiones.
 - Borrador: dic/2025.
 - 2º Consulta SEAC (8 sectores extra): S1 2026.
- Fase 3 Comisión Europea (a partir de 2026).
 - Propuesta CARACAL: ECHA, Comisión y Estados Miembros .
 - Escrutinio Parlamento y Consejo.
 - Decisión de restricción U-PFAS.

Unión Europea. CE/ECHA. U-PFAS.

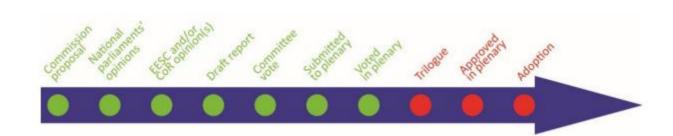
Emisiones adicionales asociadas con derogaciones. U-PFAS.

Problema muy relevante si se aprueban excepciones (por no existir alternativa).

Derogation	Derogation period	Emissions
RO2a (5f): Refrigerants in low temperature refrigeration below -50 °C	5 years	701
RO2b (5g): Refrigerants in laboratory test and measurement equipment	12 years	331
RO2c (5h): Refrigerants in refrigerated centrifuges	12 years	304
RO2d (5i): Refrigerants, clean fire-suppressing agents and insulation gases for maintenance and refilling of existing HVACR, fire-suppressing and switchgear equipment put on the market before 18 months after EiF	Time-unlimited	182 587
RO2e (5j): Refrigerants in HVACR-equipment in buildings where national safety standards and building codes prohibit the use of alternatives	Time-unlimited	69 835
RO2f (5m): Fluorinated gases used as clean fire suppressing agents where current alternatives damage the assets to be protected or pose a risk to human health	12 years	17 829
RO2g (5q): Insulating gases in high-voltage switchgear (above 145 kV)	5 years	1 164
RO2h (5w): Foam blowing agents in thermal insulation foam	12 years	17 587
RO2i (5z): Propellants for technical aerosols for applications where non-flammability and high technical performance of spray quality are required	12 years	3 001
RO2j (5aa): Preservation of cultural-paper based materials	12 years	30
RO2k (5ff): Use of fluorinated gases at the CERN research installation	12 years	952

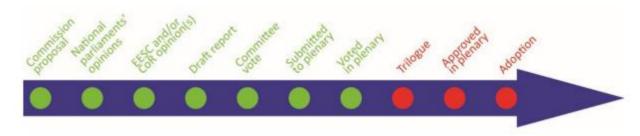
UE. PFAS en Directiva Marco e Hijas (Aguas Subterráneas y NCA).

Procedimiento 2022/0344(COD)


- Directivas modificadas:
 - DMA-WFD (Directive 2000/60/EC)
 - EQSD-DNCA (Directive 2008/105/EC)
 - GWD-DAS (Directive 2006/118/EC)

- Añadir grupo de 24 PFAS.
- Vigilancia según métodos basados en efectos (EBM).

- Se impuso enfoque comité SCHEER de la Comisión.
 - Emplear el enfoque RPF (Factor de Potencia Relativa).
 - TFA: establecer una NCA basada en un RPF de 0,002 (2,2 μg/L)*.
- NCA-EQS. Aguas superficiales:
 - 24 propuestos por la Comisión Europea.
 - TFA: 1 PFAS Adicional con un factor de potencia relativa de 0,002.
- Trasposición: diciembre-2027.


$$\sum_{i=1}^{25} RPF_i \cdot PFAS_i = 4.4 \text{ ng/L}.$$

UE. PFAS en Directiva Marco e Hijas (Aguas Subterráneas y NCA).

Procedimiento 2022/0344(COD)

- Finalizado trílogo. Primera lectura Consejo: 09/03/2026
 - NCA-EQS: PFAS en Aguas subterráneas:
 - EQS: EFSA_4. ΣPFAS_{EFSA_4}: 4,4 ng/L.
 - EQS: DWD_20 Σ PFAS_{DWD_20}: 100 ng/L.
 - Susceptible de cambio en el futuro.
- Crítica a primera vista.
 - ¿Por qué diferenciar aguas superficiales y subterráneas?
 - TFA debiera aparecer en un apartado diferente.
 - Dificultad para actualizar el RPF.
 - Toxicidad de TFA ¿está sobrevalorada?

Comparativa. PFAS en agua de consumo humano.

Ámbito	Parámetro	Compuestos	Valor paramétrico	Métodos	Países
Unión Europea (Directiva 2020/2184)	ΣΡϜΑS	Σ PFAS $_{20}$	ΣΡFAS ₂₀ : 100 ng/L	C/2024/4910	Resto incluso PT.
	PFAS Total	PFAS _{TOTAL} (s/OCDE ¿sin TFA?)	PFAS _{TOTAL} : 500 ng/L		IT, CZ, PT, BE (WIn,Brs)

País	Carácter	Compuestos	Valor
Alemania		ΣPFAS _{EFSA_4} *	Σ PFAS _{EFSA_4} : 20 ng/L
Bélgica (Flandes)		ΣΡFAS _{EFSA_4} TFA: valor guía	ΣPFAS _{EFSA_4} : 4 ng/L (2028) TFA = 0,50 μ g/L
Chequia		Σ PFAS _{EFSA_4}	Σ PFAS _{EFSA_4} : 10 ng/L (valor guía)
Dinamarca	Legislación nacional complementaria a DWD 2020/2184	ΣPFAS _{EFSA_4}	Σ PFAS _{EFSA_4} : 2 ng/L
Francia		ΣPFAS _{EFSA_4}	Σ PFAS _{EFSA_4} : 20 ng/L (propuesto)**
España		PFAS _{EFSA_4} : individual	Valor individual PFAS _{EFSA_4} : 70 ng/L
Italia		TFA (en 01/2027)	TFA = 10 μg/L (en 01/2027)
Países Bajos		Σ PFAS _{EFSA_4}	Σ PFAS _{EFSA_4} : 4,4 ng/L
Suecia		Σ PFAS _{EFSA_4}	ΣPFAS _{EFSA_4} : 4 ng/L

^{*} PFAS_{EFSA 4}: PFOS, PFOA, PFHxS, PFNA. La TWI calculada por EFSA 4,4 $\frac{ng}{kg_{\perp}BW \cdot semana}$ implica 4,4 ng/L asumiendo BW= 70 kg; Ingesta diaria : 2L; factor de reparto 20%.

^{**}Avis Haut Conseil de la santé publique 9 juillet 2024.

4 PAÍSES OCDE

Comparativa. PFAS en agua de consumo humano.

País	Carácter	Compuesto	Valor	Observaciones
Estados Unidos (EPA)	Valor legal (MCL)	PFOA, PFOS, PFNA, PFHxS, GenX, PFBS	PFOA: 4 ng/L PFOS: 4 ng/L Resto: 10 ng/L Mezcla: Índice de riesgo ≤ 1	Valores vinculantes desde 2024. Modificado en 2025, eliminando varios PFAS.
Canadá (Health Canada)	Valor objetivo (no vinculante)	$\Sigma PFAS_{25}$	Σ PFAS ₂₅ : 30 ng/L	Basado en salud, no obligatorio
Australia (NHMRC)	Valor guía basado en salud	PFOS, PFOA, PFHxS, PFBS	PFOS: 8 ng/L PFOA: 200 ng/L PFHxS: 30 ng/L PFBS: 1000 ng/L	Valores diferenciados por compuesto
Unión Europea (Directiva 2020/2184)	Valor paramétrico legal	Σ PFAS $_{20}$ o PFAS totales	Σ PFAS ₂₀ : 100 ng/L PFAS total: 500 ng/L	Obligatorio desde enero 2026. En revisión.
Japón	Valor legal (desde 2026)	ΣPFOS + PFOA	ΣPFOS + PFOA: 50 ng/L	Antes era objetivo provisional

El caso de EEUU (1)

Garantía principio quien contamina paga y prevención.

- Ley del Superfund. Respuesta Ambiental, Compensación y Responsabilidad CERCLA-1980. Mecanismo legal.
 - EPA identifica un lugar contaminado, evalúa el riesgo y lo incluye en la Lista de Prioridades Nacionales (si procede).
 - Inicia proceso de limpieza (por los productores o por la EPA con el fondo federal)
 - EPA demanda a los productores para recuperar los costes.
- Class Action Settlements. Acuerdos extrajudiciales ante acciones colectivas.
 - Acuerdos legales con empresas de abastecimiento de agua. Promuevan o no la acción.
 - No eliminan responsabilidad bajo CERCLA. Complementan acciones de EPA bajo CERCLA.
 - Pueden reducir litigios futuros pues incluyen cláusulas de liberación de responsabilidad.
 - Todos los miembros de la clase quedan incluidos automáticamente, a menos que se excluyan activamente (lo que se llama "opt out").
 - Si permanecen, renuncian a su derecho de presentar futuras demandas contra esas empresas por contaminación, aunque no reciban compensación.
 - Si un proveedor de agua no responde al aviso del acuerdo, excluyéndose, podría perder el derecho a reclamar en el futuro.
 - Esto es especialmente crítico para sistemas que aún no han detectado el contaminante, pero podrían hacerlo más adelante (FASE 2).
- Agua potable (NPDWR-Regulación Nacional Primaria de Agua Potable). Principios de evaluación de EPA.
 - Si tiene efectos adversos para la salud,
 - Si se encuentra en los sistemas públicos de agua con una frecuencia y en niveles preocupantes,
 - Si existe una oportunidad significativa de reducir el riesgo para la salud mediante una regulación nacional del agua potable.

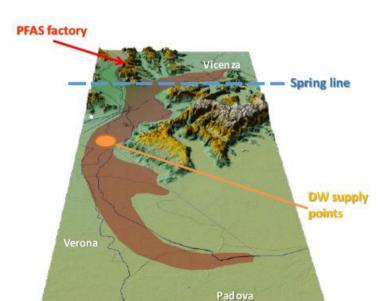
El caso de EEUU (2)

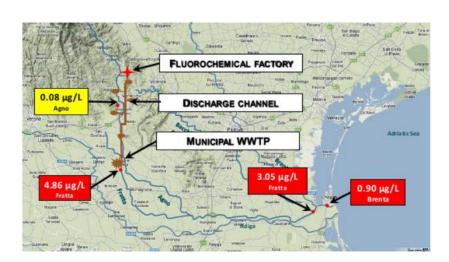
- Hoja de ruta estratégica sobre PFAS de la EPA aprobada en oct/2021.
 - 18/10/2021. Anuncio de la hoja de ruta*.
 - Apoyo en cuatro Leyes:
 - Compensación y Responsabilidad, Agua de Consumo humano, Control de sustancias tóxicas y Conservación/recuperación de recursos.

- Ley del Superfund. Mecanismo CERCLA.
 - 06/09/2022: EPA propone PFOA y PFOS como sustancias con riesgo, sujetas a CERCLA.
 - 08/05/2024: Regulación EPA. Las empresas de abastecimiento y saneamiento están en riesgo de tener que pagar por la limpieza que acometa la EPA.
 - 12/02/2025: Congreso de EEUU aprueba la Ley de Protección de Responsabilidad por PFAS que exime a las empresas de abastecimiento. De esta forma se asegura que son los productores los que pagan a la EPA por la limpieza y no los abastecedores.
- Class Action Settlements. Acuerdos extrajudiciales.
 - Existencia de centenares de demandas por contaminación por PFAS.
 - Acuerdos de las empresas fabricantes de PFAS (DuPont, Chemours, Corteva y 3M) con 400 proveedores de agua, extendido a más de 12.000.
 - Reservan fondos para pagar 14.135 M_US\$. Capitalización bursátil: 167.500 M_US\$. Dimensionamiento del riesgo 8,4%
 - Liberación de responsabilidad:
 - Si un sistema de agua acepta el acuerdo, no podrá demandar a la productora en el futuro por ningún daño relacionado con PFAS.
 - Esto incluye contaminación aún no detectada, productos con PFAS, y cualquier tipo de daño ambiental o a la salud.
 - · La cláusula es amplia y definitiva, lo que implica que la compensación recibida será la única por parte de 3M.

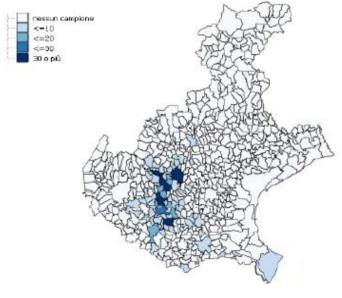
El caso de EEUU (3)

Hoja de Ruta Estratégica sobre PFAS de la EPA


- Agua de consumo humano (NPDWR-Regulación Nacional Primaria de Agua Potable /valores paramétricos):
 - 04/2024: EPA regula 6 PFAS: PFOA, PFOS, PFHxS, PFNA, HFPO-DA e índice de peligrosidad (para mezclas)
 - 05/2025: EPA anuncia que se mantiene regulación de PFOA y PFOS. <u>Se derogan el Resto (PFHxS, PFNA, HFPO-DA y el índice de peligrosidad.</u>
 - 07/2025: AWWA protesta
 - Considera inapropiado la memoria económica del Reglamento PFAS bajo el mecanismo CERCLA:
 - Coste estimado por EPA: 1.66 millardos US\$
 - Coste estimado por AWWA: 37.1-48.3 millardos US\$, que anualizados 2.7-3.5 millardos US\$, incluso 0.8-1.0 millardos US\$ en costes operacionales.
- Motivos de la derogación de PFAS:
 - Cambio de administración: Biden → Trump,
 - "Nueva" EPA argumentó que algunas regulaciones no seguían adecuadamente el proceso legal establecido por Safe Drinking Water Act.



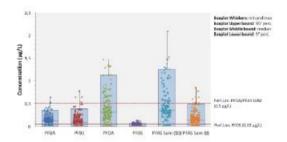
El caso de Veneto. Italia (1)

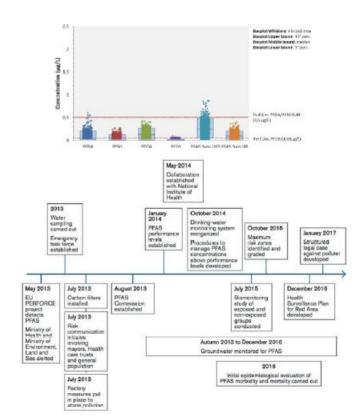

Garantía principio quien contamina paga.

- Contaminación en la cuenca de Fratta-Gorzona en Veneto
 - Empresa RIMAR/MITENI produce PFAS desde 1965.
 - Contaminación por PFAS afecta a acuífero en 150 km².
 - Valores en aguas subterráneas: 0,2-69 μg/L
 - Valores en aguas de consumo: 0,06-2,91 (0,57) μg/L.

El caso de Veneto Italia (2)

Garantía principio quien contamina paga.


- Tratamiento de carbón activo en grano
 - Captaciones alternativas
 - Carbón activo en grano.
 - Costes estimados:
 - Total: 75 M€.
 - En 2015 coste del agua pasó de 47-83 €/1000 m³ a 66-210 €/1000_m³.


Acciones tomadas

- 1977: Contaminación con BTF. Absolución de propietarios de RIMAR.
- Mayo/2013 detección.
- Julio/2013: mitigación en ETAP con CAG.
- Enero/2014: Parametrización valores de PFAS (TDI >>> TDI_{FFSA}.)
- 2016 Biomonitorización
- Enero/2017: Demanda a la empresa MITENI.
- Noviembre/2018: MITENI en quiebra.
- Producción y patentes de MITENI trasladadas a la India.

• Sentencia 26/06/2025:

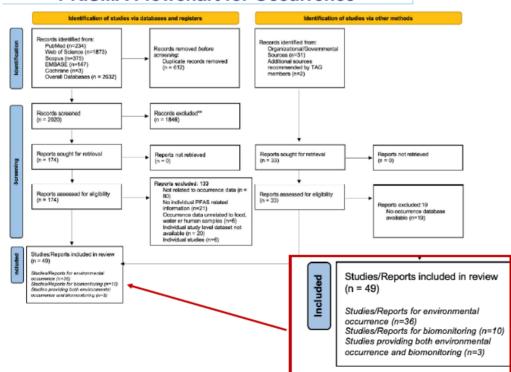
- 11 condenas hasta 141 años de prisión.
- Indemnización: 75 M€

5 METODOLOGÍA OMS REGULACIÓN PFAS. 2020/2184 PARA LA COMISIÓN EUROPEA

WHO Initiatives to Evaluate PFAS (Phase 1) Preliminary Results of Landscape Review

18th Meeting of the Drinking Water Expert Group 12 June 2025

Context WHO/ENV agreement

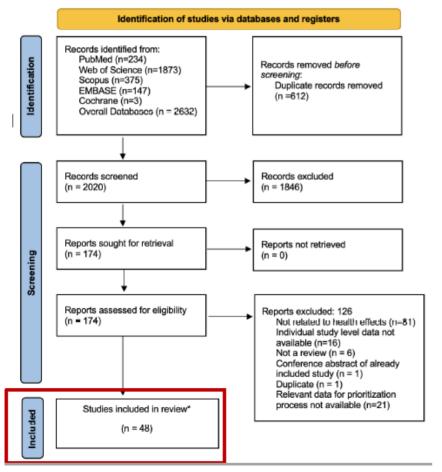

- Objectives WHO / ENV contribution agreement:
 - Phase 1:
 - PFAS: identification relevant PFAS in DW + development of a human health assessment methodology to be used in phase 2
 - Pesticide metabolites: establishment of a list of pesticides metabolites, indicating the relevance for DW ('relevant', 'non-relevant', 'needs further assessment') + recommendations on 'relevance' assessment methodology.
 - Phase 2: WHO recommendations on health-based values for relevant PFAS in DW

OMS y Comisión Europea. Ocurrencia.

- 49 Bases de datos de ocurrencia. Diagrama de flujo PRISMA.
- ≈300,000 OBSERVACIONES SOBRE 77 PFAS

PRISMA Flowchart for Occurrence

Occurrence Databases (n=49)


Total number of observations	292,808 (98.4%)	Surface water	100,489 (34.3)
(Environmental Occurrence)	202,000 (00.470)	Drinking water	66,719 (22.8)
Total number of observations	4694 (1.6%)	Fresh water	2020 (0.7)
(Human Biomonitoring)	POTENTIAL MATERIAL C	Ground water	970 (0.3)
Overall Total	297,502 (100%)	Waste water treatment plant	888 (0.3)
Number of PFAS reported in	77	Air	3104 (1.1)
occurrence databases		Soil	1,056 (0.4)
Commonly reported 10 PFAS	≣70% of total observations	Food items	118,050 (40.3)
Commonly reported 20 PFAS	=92% of total observations	Food packaging	275 (0.1)
Commonly reported 30 PFAS	=98% of total observations	Food contact material	200 (0.07)
		Dust	7 (0.0002)
		Total	292.808

OMS y Comisión Europea. Efectos para la salud.

- 48 Bases de datos de efectos para la salud. Diagrama de flujo PRISMA.
- ≈57,000 OBSERVACIONES SOBRE 66 PFAS

Health Effects Databases (n=48)

Total number of observations	56,933	Human	27,536 (48.49
Number of PFAS reported in		Rat	27,440 (47.69
health effects databases	66	Mouse	1,605 (2.8%
Commonly reported 10 PFAS	=60% of total observations	Rabbit	240 (0.4%)
Commonly reported to 11720	=50% of total observations	Dog	96 (0.2%)
Commonly reported 20 PFAS	≅80% of total observations	Pig	16 (0.02%)
Commonly reported 30 PFAS	≡91% of total observations	Total	56,933 (100%

OMS y Comisión Europea. Priorización.

• Priorización según asignación de pesos tanto para ocurrencia como para efectos sobre la salud.

Prioritization Framework Weighting Schemes

Occurrence Media	TAG-PFAS Weight	Health Effect Category	TAG-PFAS Weight
Human Biomonitoring	1.0	Developmental	1,25
Drinking Water	1.0	Reproductive	1.25
Food items	1.0	Cancer	1.0
Ground Water	1.0	Cardiovascular and circulatory system	1.0
Surface Water	0.5	Endocrine	1.0
Fresh Water	0.5		
Food contact materials	0.5	Genotoxicity	1.0
Food packaging materials	0.5	Immune	1.0
Soil	0.5	Metabolic	1.0
Air	0.1	Nervous and Neurobehavior	1.0
Dust	0.1	Renal and urinary system	1.0
Waste water treatment plant	0.1	Respiratory system	1.0
		Hepatic	0.75
		Ocular	0.75
Health Effects - Species	TAG-PFAS Weight	General toxicity	0.5
Human	1.0	Gastrointestinal	0.5
Primate	0.9	Hematologic	0.5
Pig	0.9	Musculoskeletal	0.5
Dog	0.8		
Mouse	0.7	Cytotoxicity	0.25
Rat	0.6	Dermal	0.25
Rabbit	0.4	Other	0.1

Algoritmo para priorización de PFAS.

Algorithms for Prioritizing PFAS

After merging the databases to create master databases identifying ingested PFAS and their health effects, TAG-PFAS developed a prioritization framework using simple algorithms to prioritize PFAS relative to each other

Occurrence:

- 1. Occurrence Score for individual PFAS in a given medium
 - = Detection Status x Medium Importance Score
- 2. Mean Occurrence Score across all studies reporting the PFAS in a given medium

Ensures the final prioritization reflects both detection frequency and medium importance

1. Individual Health Effects Score

for a specific outcome \mathbf{j} in species \mathbf{k} for each PFAS:

$$Score_{i,j,k} = S_{i,j,k} \times E_{i,j,k} \times T_{i,j,k}$$

 $\overline{\text{Score}}_{i,j,k} = \frac{\sum n = 1^N \text{Score}_{i,j,k,n}}{N}$

2. Mean Health Effect Score

for each PFAS i, health effect j, and species k:

Ensures that well studied PFAS are not over weighted.

3. Aggregated Health Effects Score for each PFAS

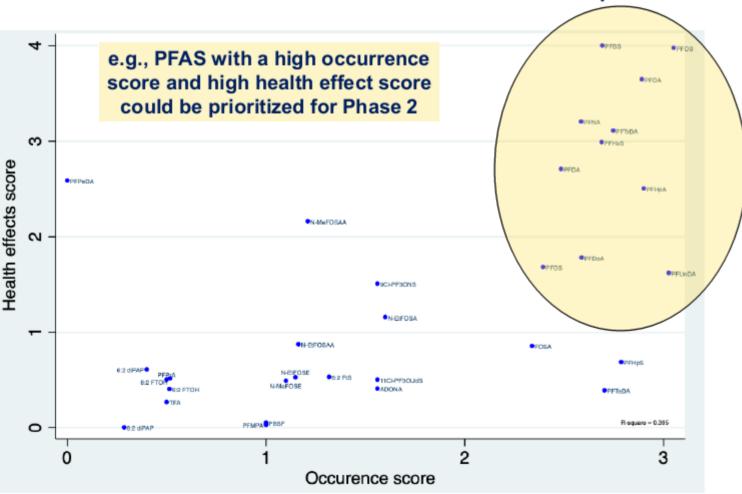
Ensures that all reported health effects contribute to the final prioritization score.

$$H_{\mathrm{total},i} = \sum_{j=1}^{J} \overline{\mathrm{Score}}_{i,j}$$

• Jerarquía o ranking de ocurrencia.

Ranking of PFAS Occurrence (Excerpt)

PFAS (n=77)	Humans	Drinking water &/or Ground Water	Food	Food packaging &/or Food contact material	Air & Dust	Fresh water and/or Surface water	Soil	Waste water TP	Total Score	Rank
	1.000	0.886	0.294	0.059	0.098	0.427	0.265	0.023	3.051	
PFOS	N=1087	N=5911	N=13235	N=51	N=547	N=10926	N=283	N=137	N=32177	1
	1.000	0.989	0.098	0.500	0.001	0.344	0.000	0.093	3.026	
PFUnDA	N=262	N=4901	N=5858	N=9	N=84	N=8482	N=27	N=260	N=19883	2
	1.000	0.972	0.029	0.500	0.003	0.372	0.000	0.024	2.900	12
PFHpA	N=120	N=2794	N=5961	N=14	N=86	N=7138	N=24	N=17	N=16154	3
	1.000	0.880	0.105	0.116	0.098	0.440	0.224	0.027	2.891	
PFOA	N=1021	N=5338	N=12946	N=86	N=304	N=10451	N=239	N=123	N=30508	4
	1.000	0.992	0.013	0.500	0.000	0.282	0.000	1	2.787	
PFHpS	N=80	N=1350	N=2222	N=1	N=48	N=875	N=7		N=4583	5
	1.000	0.977	0.033	0.125	0.099	0.344	0.185	0.019	2.783	
PFBA	N=20	N=1444	N=4380	N=36	N=84	N=5035	N=62	N=26	N=11087	6
	1,000	1.000	0.102	0.500		0.146			2.747	
PFTrDA	N=21	N=1346	N=3011	N=3		N=2134			N=6515	7
	1.000	0.865	0.054	0.146	0.096	0.405	0.167	0.008	2.741	
PFHxA	N=39	N=4134	N=8131	N=41	N=163	N=6597	N=75	N=64	N=19244	8


• Jerarquía o ranking de efectos para la salud.

Health Effects Algorithm Ranking (excerpt)	Developmental	Reproductive	Cancer	Cardiovascular system	Endocrine	Immune	Metabolic	Nervous & Neurobehavioral	Renal & Urinary	Hepatic	Gastrointestinal	General toxicity	Total score
PFBS	0.000 N=6			1 000 N=1	1 000 N=1			8.000 Net			0 500 N=1	0.500 N=1	4 000 N=11
PFOS	0.270 N=74	0.328 N=137	0.138 N=138	0.264 N=106	0.309 N=275	0.158 N=19	0.000 N=1	0.686 N=35	1.000 N=1	0.104 N=152	0.400 N=5	0.319 N=36	3.976 N=979
PFOA	0.945 N=87	0 363 N=164	0.182 N=148	0.275 N=131	0.797	0.132 N=38	0.000 N=1	0.667 N=45	0.400 N=3	0.795 N=247	0.444 %=0	0 303 N=33	3 647 N=1117
PFNA	0.265 N=33	0.298 N=21	0.175 N=57	0,309 N=55	0.362 N=105	0:154 N=13	0.000 N=1	0.533 N=30		0.222 N=81	0.500 N=1	0.389 N=9	3.207 N=406
PFTrDA	0,065 N=50	0 083 N=24	0.463 N=13	0.333 N=33	0.175 N=63	0.315 N=54	0.333 N=24	0.029 N=35	0.000 N=3	0.750 N=1	0.500 N=3	0.000 N=32	3 111 N=343
PFHxS	0.417 N=12	0.288 N=13	0.219 N=04	0.313 N=18	0.206 N=136	6.167 N=12	0.000 N-1	0.587 N=30		0.107 N=91	0.375 N=0	0.333 N=6	2.901 N=447
PFDA	0.139 N=0	0.675 N=2	0.419 N=31	0 100 N=10	0 500 N=4	0 000 N=2		0.313 N=0		0.094 N=8	0.500 N=5	0 000 N=1	2.710 N=81
PFPeDA	0.000 N-1	0.525 N=4		0.222 N-9	0.222 N=36		1.000 N=8	(A	0.333 N-3	0.188 N=4			2.590 N=65
PFHpA	0.199 N=14	0.079 N=111	0.091 N=11	0.140 N=50	0.308 N=13	0 106 N=66	0.259 N=54	0.079 N=18	0.400 N=5	0.321 N=14	0.500 N=2		2:507 N=418
N-MeFOSAA	0.063 N=788	0.106 N=362	0.000 N=125	0:257 N=502	0.026 N-1154		0.567 N=776	0.002 N=525	0.333 N=48	9.250 N=24		0:500 N=1	2.164 N=4395
PFDoA	0.212 N=1365	0.297 N=2266	0.280 N=100	0.168 N=1764	0.227 N=2001	0.101 N=1457	0.207 N=1009	0.031 N=465	0.048 N=151	0.128 N=421	0.017 N=29	0.053 N=68	1.785 N=11376
PFDS	0.191 N=236			0.133 N-965	1.000 N=0		0.273 N=176		0.000 N=2	0.088 N=136			1.684 N=1524
PFUnDA	0.107 N=226	0.116 N=254	0.213 N=61	0.301 38-217	0.130 N=249	0.153 N=230	0.222 N=285	0.066 N=231	0.060 N=60	0.077 N=64	0.038 N=26	0.012 N=26	1.623 N=2066
9Cl-PF3ONS	0.000 N=80	0.422 No71	0.000 N=1		0.105 N=171	0.273 N=352	0.711 N=304						1.511 N=985
N-EtFOSA		0.700 N=5				0.058 N=85				0.315 N=5		0.086 N=11	1.159 N=106
Perfluoro-2,5-dimethyl-3,6- dioxanonanoic acid					0.350 N=4		0:350 N=36			0.190 N=52		0.262 N=4	1.143 N=76
1,6-Diiodoperfluorohexane		0.157 N=191		0.048 N=50	0.121 N=234	0.114 N=200	0.113 N=12	0.084 N=03	0.038 N=316	0.052 N=236	0.000 N=140	0.056 N=145	0.384 N=2195

• Puntuación para ocurrencia y efectos para la salud (32 PFAS), determina jerarquía 11 PFAS (Fase 2).

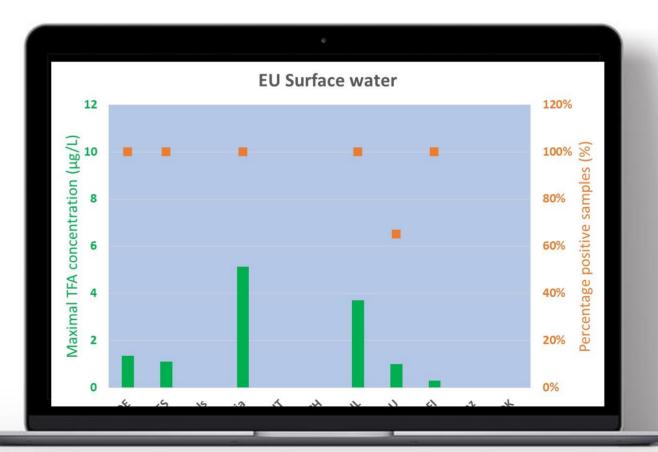
32 PFAS intersect on occurrence and health effects landscape reviews

- Estos 11 PFAS están en Directivas de Aguas.
- Los 21 PFAs restantes:
 - 3 PFAS tienen alta ocurrencia/bajos efectos.
 - 6 PFAS tienen alta ocurrencia/sin info sobre efectos.
 - 2 PFAS tienen media ocurrencia/ bajos efectos.
 - 2 PFAS tienen baja ocurrencia/bajos efectos.
 - 8 PFAS no están registrados o no considerados.

Enfoque por niveles.

- Exposición/frecuencia vs peligro/efectos para la salud
 - Definir jerarquía de ocurrencia o frecuencia.
 - Definir jerarquía de efectos para la salud o peligro.
 - Caracterización de riesgo (combinación exposición y peligro)
 - Priorización de riesgos para la toma de decisiones
- Se prevé que el estudio de la OMS finalice a finales de 2026. La directiva podría revisarse según sus conclusiones.

PFAS in EU Water Directives	Abbreviation	Ground &/or drinking water (n=21)	Food, food packaging &/or food contact (n=24)	Human biomonitoring (16)	Occurrence Rank	Health Effects Rank
Perfluorooctanesulfonic acid	PFOS	Х	Х	Х	1	2
Perfluoroundecanoic acid	PFUnDA	X	Х	Х	2	13
Perfluoroheptanoic acid	PFHpA	х	Х	X	3	9
Perfluorooctanoic acid	PFOA	Х	Х	Х	4	3
Perfluoroheptane sulfonic acid	PFHpS	Х	Х	Х	5	21
Perfluorobutanoic acid	PFBA	х	х	X	6	NA
Perfluorotridecanoic acid	PFTrDA	Х	X	х	7	5
Perfluorohexanoic acid	PFHxA	Х	Х	Х	8	NA
Perfluorotetradecanoic acid	PFTeDA	х	х	х	9	32
Perfluorobutane sulfonic acid	PFBS	Х	Х	X	10	1
Perfluorohexanesulfonic acid	PFHxS	Х	Х	х	11	6
Perfluoropentanoic acid	PFPeA or PFPA	Х	Х	х	12	NA
Perfluorododecanoic acid	PFDoDA or PFDoA	Х	Х	х	13	11
Perfluorononanoic acid	PFNA	Х	х	х	14	4
Perfluorodecanoic acid	PFDA	Х	Х	Х	15	7
Perfluorodecane sulfonic acid	PFDS	x	X	X	16	12
Ammonium 4,8-dioxa-3H- perfluorononanoate	ADONA/DONA	х	х	N	21	30
2,3,3,3-tetrafluoro-2- (heptafluoropropoxy)propanoic acid	HFPO-DA (or GenX)	х	х	N	24	NA
Perfluoropentane sulfonic acid	PFPeS or PFPS	X	X	N	25	NA
Perfluorononane sulfonic acid	PFNS	X	X	N	27	NA
Perfluorododecane sulfonic acid	PFDdSA or PFDoS	X	X	N	36	NA
2-(Perfluorooctyl)ethanol	8:2 FTOH	N	Х	N	50	26
2- (Perfluorohexyl)ethyl alcohol	6:2 FTOH	N	X	N	51	31
Perfluorohexadecanoic acid	PFHxDA	N	X	N	75	NA
Perfluorotridecane sulfonic acid	PFTrDSA	N	N	N	NA	NA
Perfluoroundecane sulfonic acid	PFUndSA	N	N	N	NA	NA
2,2-difluoro-2-((2,2,4,5-tetrafluoro-5- (trifluoromethoxy)-1,3-dioxolan-4-yl)oxy)	C604	N	N	N	NA	NA
Perfluorooctadecanoic acid	PFODA	N	N	N	NA	NA


- 1. Asegurar que los PFAS bien estudiados no estén sobreponderados.
- 2. Plazo previsto: finales de 2026.
- 3. Dada su presencia ambiental y la información toxicológica disponible, la inclusión del TFA en la evaluación de riesgos por mezclas de PFAS podría considerarse.
- 4. Adicional Fase 1: Técnicas de tratamiento y costes asociados. (December 2025)
- 5. Posibilidad de una RAP Responsabilidad Ampliada del Productor

Trifluoroacético.

Ácido trifluoroacético TFA.

- Características.
 - Persistente.
 - Ubicuo (agua, atmósfera, i/ Antártida): 500-800 ng/L.
 - Lluvia (Alemania) contiene 335 ng/L.
 - Origen:
 - Subproducto oxidación enérgica de PFAS.
 - Metabolito de ciertos plaguicidas.
- Dudas respecto a su toxicidad.
 - Mandato de CE a EFSA para revisar valores de referencia (reprotóxico 1B) . Opinión en desarrollo.
 - Mediática.

6 CONCLUSIONES

Conclusiones

- Atención prioritaria a los PFAS. La experiencia internacional demuestra la necesidad de un enfoque riguroso.
- Necesidad de homogeneizar con criterios científicos, que prioricen la protección de la salud pública.
- Principios rectores:
 - Precaución.
 - Resolución en origen y
 - Quien contamina paga.
- Limitaciones del marco actual.
 - Es imprescindible el marco REACH/CLP/IED y el resto de herramientas legales en la Unión Europea.
 - La generación de TFA demuestra que el Convenio de Estocolmo (Reglamento POP) no es suficiente para abordar este problema.
- Es necesaria la prohibición de todos los usos de PFAS.
 - Debe prestarse especial atención a la presencia y efectos del TFA.
- La eliminación de PFAS en agua de consumo humano es técnicamente compleja, costosa y genera residuos contaminados.
- Es necesario evaluar si la Responsabilidad Ampliada del Productor es suficiente ante la magnitud del problema.

¡Muchas gracias!

