

Seminario: "PFAS y otros contaminantes emergentes, nuevo reto en el sector del agua"

TECNOLOGÍAS DISPONIBLES PARA ELIMINAR CONTAMINANTES EMERGENTES EN AGUA

Pedro Simón Andreu Director Técnico ESAMUR

ESAMULEntidad de Saneamiento y Depuración de la Región de Murcia

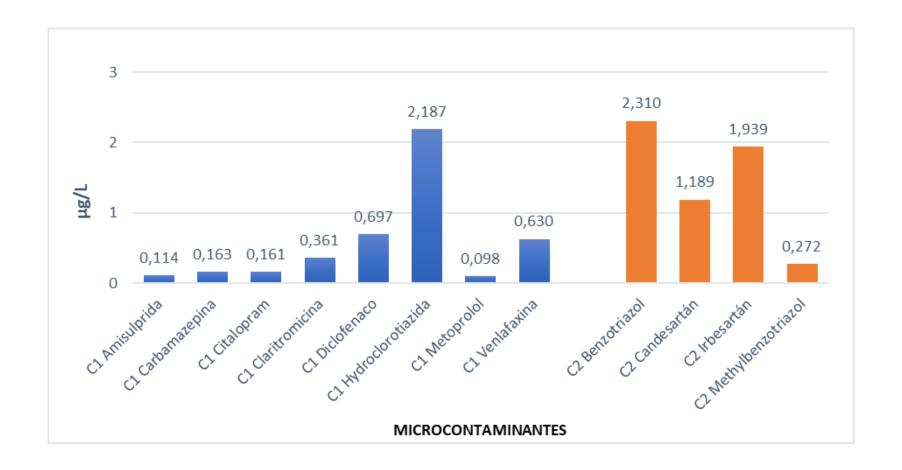
Experiencias en Región de Murcia

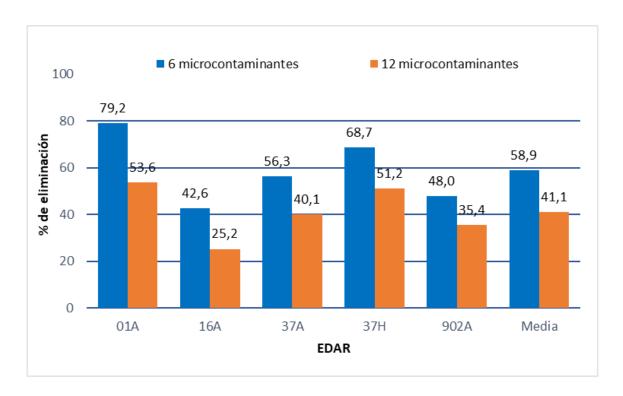
- ➤ 2008 empezamos a medir CE
- > Diferencias en eliminación entre tipos de plantas
- > Variabilidad muy alta en tiempo y localización
- > La falta de indicadores era un hándicap
- > Pruebas con pilotos de muchos tipos de tratamiento

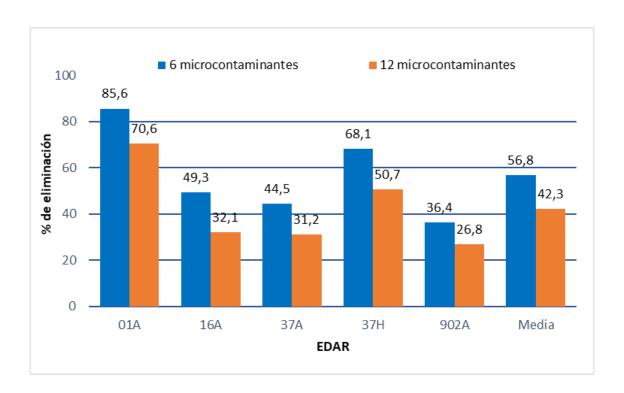
Tratamientos cuaternarios escala real

Carbón activo en polvo afectaría uso lodo

Advanced technologies



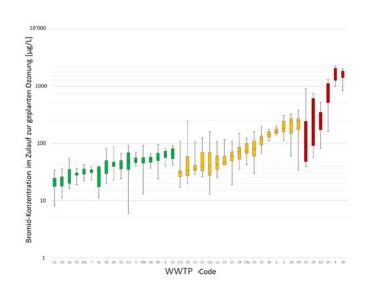

Concentración en el influente



Cálculos DMA

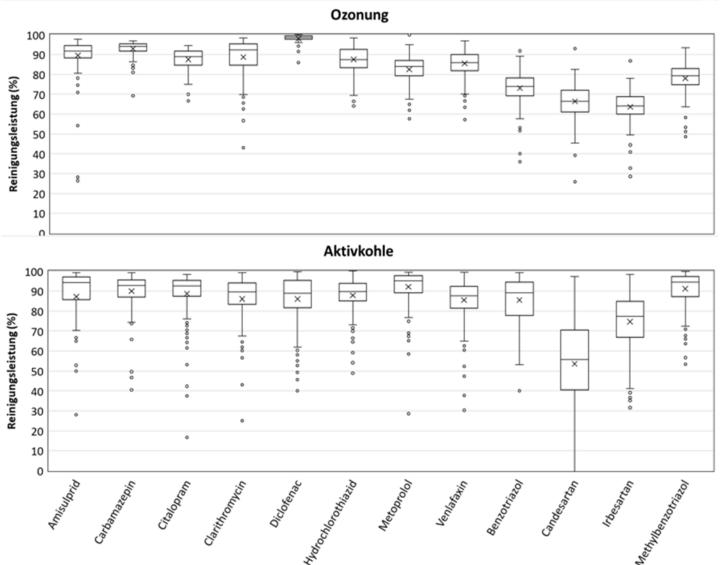
Cálculos IPPC

- Límites cuantificación muy variables
- > Cálculos con distintas metodologías son muy diferentes
- > Rendimientos negativos a veces
- > ¿Se puede cambiar los indicadores elegidos a nuestra elección?


Estudios realizados ESAMUR (Agustín Lahora)

Selección entre ozono y carbón activo

- Excelente calidad agua previa (nitritos, M.O., etc) es fundamental
- Producción subproductos tóxicos por tratamiento con ozono (bromatos a partir de bromuros y otros)
- > Coste electricidad (aire u oxígeno líquido)
- Coste carbón activo seleccionado y número de renovaciones



Bromide concentrations:

- <100μg/L: unproblematic
- 100-400μg/L: unclear
 look for source
- >400μg/L: conspicuous

Datos VSA (Suiza)

Datos VSA (Suiza)

OZONO

- > Características de agua influente
- Estudio toxicidad (no detectada hasta ahora en nuestros estudios) de efluente
- > Optimización de dosis (sensores, transferencia, fabricantes,...)
- > Partiendo de aire u oxígeno
- > Combinación con desinfección
- > COSTE ENERGÍA
- > Huella de carbono
- **>** ...

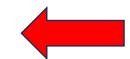
CARBÓN ACTIVO

- Cientos de carbones activos con características muy distintas (procedencia, número de poros, tamaño de poros, activado o no,...)
- > TASA DE RENOVACIÓN (Estudios actuales ESAMUR con SACYR y Univ Alicante): Búsqueda protocolos (azul de metileno, iodo, medidor indicador, ...)
- Dificultades operativas importantes para la extracción y reposición del carbón activo
- Protocolos limpieza carbón activo
- ¿Regeneración carbón activo? (Estudios huella de carbono y pérdida efectividad)
- (Desorción brusca en algunas ocasiones)

Carbón activo granular

Datos orientativos coste 1 reposición:

EDAR 5000 m3/día: 25.000 €


EDAR 22500 m3/día: 150.000 €

Energy and cost calculation for advanced treatment

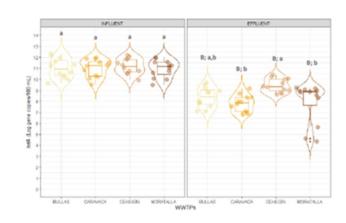
Costs include investment (amortization) and operation

	Energy WWTP kWh/m ³	Primary energy kWh/m³	Costs CHF/m ³ 14'400 p.e.	Costs CHF/m ³ 590'000 p.e.	Costs CHF/p.e./y 14'400 p.e.	Costs CHF/p.e./y 590'000 p.e.
Ozonation (5 g/m ³)	0.06	0.27	0.15-0.19	0.04-0.06	27-33	4.5-7
Ozonation (5 g/m³) with sand filtration	0.10	0.39	0.32-0.36	0.09-0.11	57-63	11-13
PAC (10 g/m ³)	0.02	0.32	0.25-0.3	0.1-0.15	44-53	12-18
PAC (10 g/m³) with sand filtration	0.06	0.44	0.42-0.47	0.15-0.2	74-84	18-24

Current energy consumption of WWTP: 0.33 kWh/m³ (41 kWh/cap/y) Current costs: 0.80 CHF/m³ for a small, 0.55 CHF/m³ for a large WWTP

- cost increase for a small WWTP by 20-50%
- Cost increase for a large WWTP by 10-20%

Abegglen and Siegrist (2012) Report BAFU Bern. Umwelt-Wissen Nr. 1214.


Entidad de Saneamiento y Depuración de la Región de Murcia

Otras líneas investigación ESAMUR

Efecto balsas (almacenamiento) sobre CE

Bacterias y genes resistencia antibióticos

Efectos CE (presencia productos agrícolas, suelos, etc), cómo eliminar de suelo,...

PFAS

	PM-2811	PM-2812	PM-1	PM-3605	PM-387	PM-5200	PM-14	PM-391	PM-3785	PM-7901
	Entrada	Salida	Riego	Entrada	Salida	Riego	Entrada	Salida	Superficial	Subterránea
Suma de 4 PFAS	<0,08	0,010	0,007	0,011	0,011	0,011	0,034	0,007	0,009	0,014
Suma de 20 PFAS	<0,75	0,017	0,017	0,165	0,062	0,040	0,220	0,031	0,023	0,023
PFOA	<0,02	0,008	0,005	0,008	0,006	0,007	0,006	0,005	0,005	0,002
PFOS	<0,02	<0,002	<0,002	0,009	0,004	0,008	0,012	0,004	0,003	0,004

0,07 μg/L en potable 0,10 μg/L en potable prioritaria NCA 0,00065 μg/L

CONCLUSIONES

- > Sistemas y optimización de eliminación de CE: Nos queda trabajo por hacer y seguir aprendiendo
- Los estudios tienen que hacerse caso por caso
- Hay que seguir trabajando en huella de carbono y toxicidad
- > Alerta con fórmulas de validación del rendimiento
- Investigar honradamente y con objetividad en el conocimiento de los "efectos". No principio de precaución sin adecuado fundamento
- > PREVENCIÓN: Reducción en origen y biodegradabilidad compuestos como objetivos prioritarios

