

Índice

	Contexto '	v anteced	entes
••	Contected	, arreced	Circos

- 2. Grupo de trabajo AEAS
- 3. Estudios específicos

Metodología y bases de partida

Pequeñas poblaciones

Gestión de pluviales

Eliminación de nutrientes

Neutralidad energética

Microcontaminantes

Recuperación estruvita

4. Encuesta AEAS

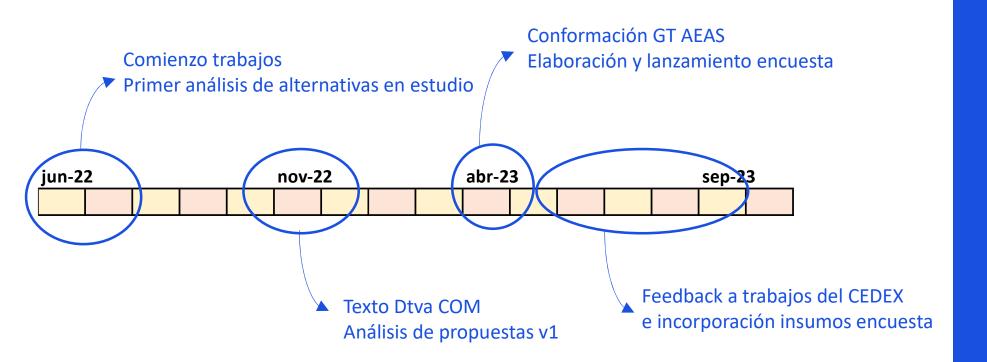
Contexto y antecedentes

El CEDEX da apoyo a la DGA en la revisión de la Directiva 91/271

- Participación en grupo de trabajo interno
- Revisión en profundidad del texto y propuesta de enmiendas
- Estimación de los costes, inversión y O&M

Estimación de costes en modificaciones más importantes:

- Pequeñas poblaciones
- Gestión de pluviales
- Eliminación de nutrientes
- Neutralidad energética
- Microcontaminantes
- Otros: recuperación de nutrientes


Valorar el incremento de costes debido a la reforma de la directiva

Herramientas adaptables a distintas propuestas normativas

Contexto y antecedentes

Trabajos estimación costes

CEDEX

Centro de Estudios Hidrográficos

- Surge en el seno del GT de OTE de AEAS (Com V)
- Objetivo: Desarrollar conjuntamente con el CEDEX el estudio costes
- Actualmente 15 integrantes
- EMASESA, ACA, Cons. Besos-Tordera, FACSA, CYII, NILSA, UCM, FCC-Aqualia.
- Centrado en estudios donde es más importante la participación sectorial de modo global:
 - Eliminación de nutrientes
 - Neutralidad energética
 - Pequeñas poblaciones
- 3 reuniones hasta hoy: encuesta, revisión bases partida, revisión estudio eliminación nutrientes v l

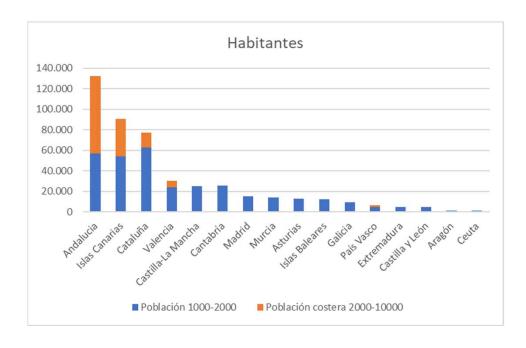
Metodología general

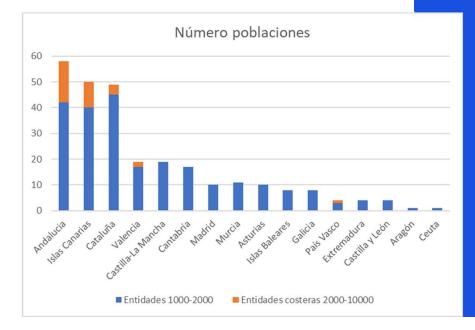
- 1) Identificación de medidas a estudiar
 - Definición línea de base
- 2) Determinación de curvas de costes para la línea de base
- 3) Determinación de curvas de costes para la medida
 - 12 casos poblacionales, entre 1 000 y 3 000 000 h-e
 - Bases de partida tipo
- 4) Información sobre la situación actual
 - Datos reportados por España a la COM
 - Otra información disponible o generada (CNV, búsquedas en internet, INE...)
- 5) Estimación de costes

Bases de partida tipo consideradas

Variable	Valor		
Dotación y Coef retorno	250 L/h-e/d y 0,8		
Concentración DBO ₅	300 mg/L		
Concentración NT	50-65 mg/L		
Concentración PT	9 mg/L		
Temperatura agua mes más frío	15ºC		
Temperatura agua promedio anual	19ºC		

- Adaptables a posibles nuevos contextos a estudiar
- Actualización de costes por IPC a enero de 2023

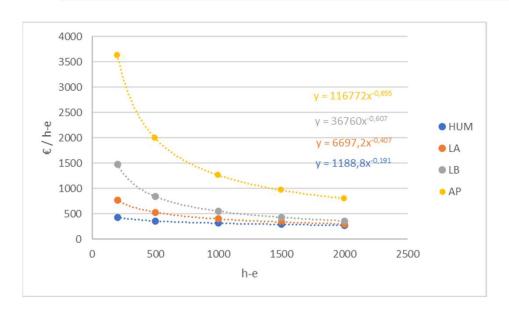


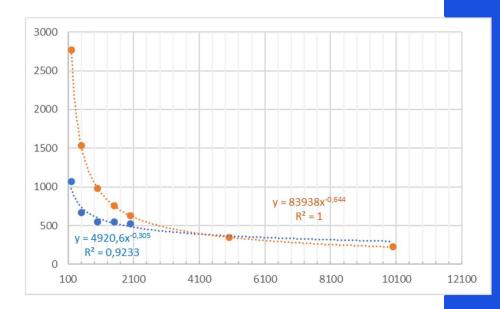

Pequeñas poblaciones

Identificación de poblaciones

Información partida: entidades de población del INE, Q-21, CNV, internet

	Habitantes	Poblaciones
Entidades I 000 – 2 000 h-e	329 000	240
Entidades costeras 2 000 – 10 000 he	134 500	33




Pequeñas poblaciones

Elaboración curvas costes

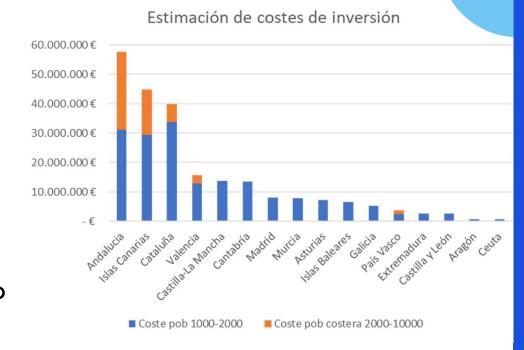
% tecnologías consideradas para elaboración de curva de costes tipo

h-e	200	500	1.000	1.500	2.000	2.001	5.000	10.000
Humedales	50%	60%	50%	20%	10%	0%	0%	0%
Lagunas de estabilización	30%	20%	20%	20%	15%	0%	0%	0%
Lechos bacterianos	5%	5%	10%	30%	35%	40%	40%	40%
Aireación prolongada	15%	15%	20%	30%	40%	60%	60%	60%

Pequeñas poblaciones

Resultados

Costes de inversión: 230 M€


- 1.000-2.000 h-e: 178 M€

- 2.001-10.000 h-e: 52 M €

Costes de O&M: 10,2 M€/año

- 1.000-2.000 h-e: 7,6 M€/año

- 2.001-10.000 h-e: 2,6 M€/año

Nota: Estudio sujeto a revisión y costes determinados sin haber aplicado la línea de base considerada (Pretratamiento + Tanque Imhoff)

Centro de Estudios Hidrográficos

Gestión pluviales

Medidas para reducir la contaminación en tiempos de lluvia. Actuación sobre todo el ciclo urbano de las aguas pluviales:

- Técnicas de drenaje sostenible
- Nuevas redes separativas y aumento de capacidad de regulación de redes
- Retención de flotantes y sólidos gruesos en alivios
- Tanques de tormentas
- Aumento de la capacidad de tratamiento
- Nuevos tratamientos

Herramienta que permitirá la comparativa costes inversión entre distintos escenarios legislativos basados en redes unitarias en:

- Carga contaminante
- Rendimiento hidráulico

Gestión pluviales

Simulaciones con Directiva y Reglamento de Dominio Público Hidráulico

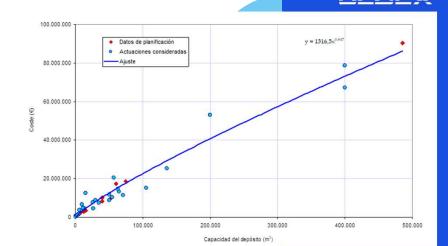
	DIRECTIVA	RDPH		
	Carga (contaminación)	Volumen		
Criterios	1% CARGA TIEMPO SECO	50% - 60% RENDIMIENTO HIDRÁULICO		
	Anual	10 episodios significativos		
Exigencia de tratamiento	Secundario	Primario (red unitaria)		
		Pre-dimensionamiento		
Datos pluviométricos de partida	Sin indicaciones	Percentil 80 de lluvias		
ac pai daa		Datos quinceminutales (máximo)		

Gestión pluviales

Costes básicos de referencia

- Tanques de Tormenta (€/m³)
- Primario: % de la línea completa (€/h-e)
- Secundario: % de la línea completa (€/h-e)
- Tratamiento Físico químico (€/m³)

Cálculos por hectárea tipo


• volúmenes a gestionar de escorrentía

Escenarios densidad de población

- Residencial: 100 hab/ha. Coeficiente escorrentía: 0,70.
- Densamente poblada: 300 hab/ha. Coeficiente escorrentía: 0,95.

Escenarios tamaño de aglomeración

- I0.000 h-e
- 50.000 h-e
- 100.000 h-e

CEDEX

Centro de Estudios Hidrográficos

Gestión pluviales

Datos pluviométricos de partida

- 91 estaciones que cubren prácticamente toda la península
- Mínimo 10 años de registro
- Datos diarios

Hipótesis básicas

- Capacidad punta decantación primaria: 1,5
- Capacidad punta tratamiento secundario: 1,5
- Concentración escorrentía considerada: 300 mg/l DBO5
- Reducción de carga contaminante (DBO5)
 - Tanque de tormenta: 50 %
 - Decantación primaria: 50 %
 - Tratamiento físico-químico: 70%

Gestión pluviales

Próximos pasos

La herramienta permitirá obtener mapas costes por estación meteorológica para:

- Diferentes rendimientos hidráulicos
- Diferentes porcentajes carga

En colaboración Grupo calibración NNTT AEAS (Com IV)

Posibles estudios adicionales

Resultados meteorología varias ciudades Europeas

CEDEX

Centro de Estudios Hidrográficos

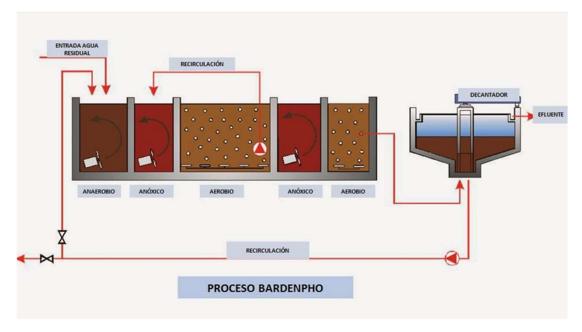
Eliminación de nutrientes

Reformas necesarias (6 mg NT/L y 0,5 mg> PT/L)

Gran variabilidad dependiendo de:

- tecnología existente
- límites normativos aplicables en la actualidad
- características AR
- espacio disponible

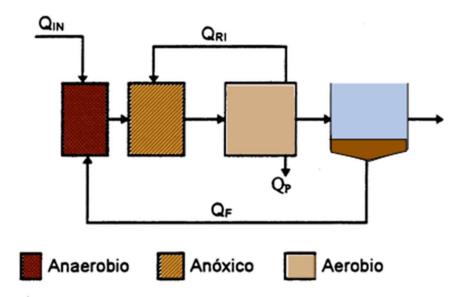
En biofiltros, biodiscos o lechos bacterianos inversiones ingentes, próximas a nueva construcción


Tecnologías principales consideradas en el estudio:

- EDAR < 50.000 h-e: AP
- EDAR > 100.000 h-e: FA

Eliminación de nutrientes

Elementos necesarios FA


- Proceso Bardenpho: postdesnitrificación con dosificación mat org.
- Tratamiento de retornos de lodos
- Lecho móvil (cuando no hay espacio)
- Precipitación química de P
- Filtración a la salida del decantador secundario

Eliminación de nutrientes

Elementos necesarios AP

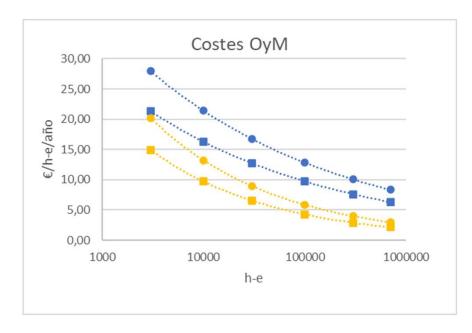
- Predesnitrificación con dosificación de materia organica
- Cámara anaerobia previa para aumentar la eliminación biológica de P
- Precipitación química de P
- Filtración a la salida del decantador secundario

Centro de Estudios Hidrográficos

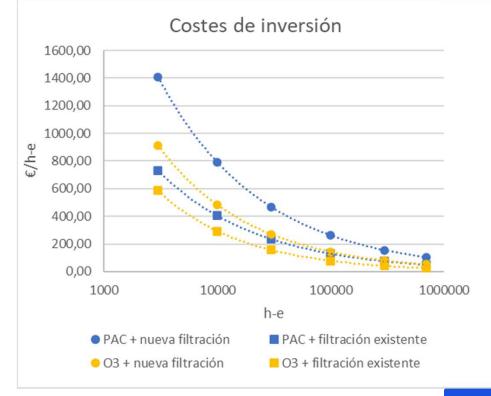
Estudio neutralidad energética

Identificación de medidas

- Reformas de EDAR de AP a FA y LB
 - Con DIG ANA
 - Con estabilización del fango en EDAR externa
- Reforma de EDAR de DIG AER a DIG ANA
- Mejora y optimización de producción de biogás con hidrólisis térmica y codigestión
- Implantación de sistemas de valorización del biogás
 - Motores
 - Turbinas
 - Upgrading biogás e inyección a red gasista
- Mejoras de eficiencia energética más allá de las expuestas anteriormente
- Instalación de energía fotovoltaica


Centro de Estudios Hidrográficos

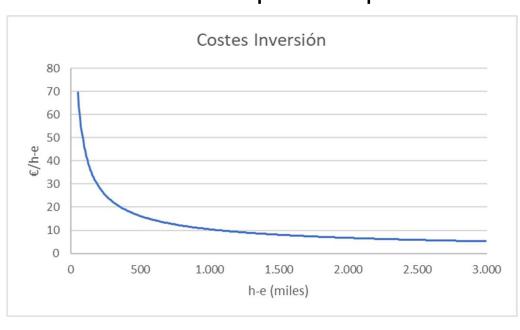
Microcontaminantes

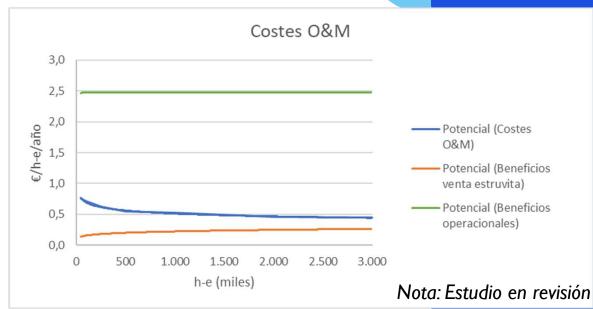

Costes disponibles del Estudio Agencia Medioambiental Suiza de 2008

Tecnologías: Ozono + carbón activo + filtración

Costes desorbitados

Experiencias en España muy escasas


Recuperación de estruvita


LELLEX

Centro de Estudios Hidrográficos

Experiencias en España: EDAR Sur y EDAR Calahorra

Estudio realizado por la empresa canadiense Ostara (50 000– 3 000 000 h-e)

Beneficios operacionales considerados:

- Menor consumo poli deshidratación
- Aumento eliminación amonio en retornos
- Menor consumo de FeCl₃
- Menor producción lodos

Encuesta AEAS

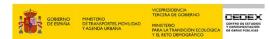
- Surge en el seno del GT de OTE de AEAS (Com V)
- Objetivo: insumo para estudios de estimación costes
- Versa sobre neutralidad energética y eliminación nutrientes
- Revisada y consensuada en GT de Costes de AEAS
- Alcance: EDAR > 10 000 h-e
- Ya distribuida. 6 de junio fecha límite

DATOS GENERALES				
1. Nombre de la EDAR				
2. Ubicación de la EDAR (Provincia)				
3. Año de finalización de la última reforma integral de la EDAR				
4. Indicar la carga y el caudal de la EDAR	Capacidad actual para cumplir con los requisitos normativos, no tiene por qué coincidir con la capacidad de su primer diseño si ha habido reformas posteriores	Promedio anual 2022 tratado en tratamiento secundario		
Caudal (m³/d)				
Carga (he)				
5. Concentración media anual de NT a la entrada de la EDAR (mg NT/L)				
6. Concentración media anual de PT a la entrada de la EDAR (mg PT/L)				
7. Temperatura del agua	Media anual (ºC)	Media mes más frio (ºC)		
Temperatura a la entrada de la EDAR				
Temperatura en el tratamiento biológico				
8. Límite aplicable para la eliminación de nutrientes según la Autorización de Vertido				
Otros (Indicar cuales)				
9. ¿Cómo estan definidos los límites de los nutrientes en la Autorización de Vertido?				
10. Tipología de tratamiento principal de la línia de agua				

Localización

Centro de Estudios Hidrográficos Paseo Bajo Virgen del Puerto, 3 28005 Madrid

Contacto


Carlos López Monllor +34913358010

Email y website

carlos.lopez@cedex.com www.cedex.es

