WATER FOOTPRINT, EXTENDED WATER FOOTPRINT AND VIRTUAL WATER TRADE OF THE CANTABRIA REGION, SPAIN

A CRITICAL APPRAISAL OF RESULTS, UNCERTAINTIES AND METHODS

SEMINARIO NACIONAL – OA FMB
“La huella hídrica como instrumento para la planificación hidrológica y reducción de conflictos”
22 Junio 2015

Silvia Díaz-Alcaide
Pedro Martínez-Santos
Bárbara Willaarts
Enrique Hernández Moreno
M. Ramón Llamas
CANTABRIA

Surface: 5,300 km2
Population: 600,000
Population density: 110 inh/km2
Rainfall: 700-2,500mm/yr
Capital city: Santander
GDP per capita: 22,328€
This project aims at evaluating the water footprint of one of Spain’s “green regions”

The analysis is extended to cater for:

- Virtual water flows
- Extended water footprint
- The integration of green water in the regional water balance

Grey water is not accounted for
CONTENTS

1. Motivation
2. Water footprint of Cantabria
3. Virtual water flows
4. Integration of green water in the regional water balance
5. Precisions and uncertainties
6. Conclusions

APPROACH TO COMPUTING THE REGIONAL WATER FOOTPRINT

Water Footprint
Sector-based calculations follow standard approaches:

<table>
<thead>
<tr>
<th>Sector</th>
<th>Formula</th>
</tr>
</thead>
</table>
| Livestock | \(\text{WF}_{\text{direct}} = \sum (\text{animals} \cdot \text{direct use per animal}) \)
\(\text{WF}_{\text{indirect}} = \sum (\text{animals} \cdot \text{virtual water embedded per ton of food} \cdot \text{tonnes of food}) \) |
| Agriculture | \(\text{WF} = \sum (\text{Evapot}_{\text{green}} \cdot \text{Total Surface} + \text{Evapot}_{\text{blue}} \cdot \text{Irrigated Surface}) \) |
| Forestry (+ nature)| \(\text{WF} = \sum_{n,z=1}^{r} [(1 + wz \cdot \text{ETo} / P) / [(1 + w \cdot \text{Eo} / P) + (P / \text{ETo})]] \) |
| Domestic use | \(\text{WF} = (\text{Inhabitants} \cdot \text{average allowance}) - \text{Return} \) |
| Tourism | \(\text{WF} = (\text{Rooms} \cdot \text{occupation rate} \cdot \text{allowance}) \) |
| Industry | \(\text{WF} = \text{Demand} - \text{Return} \)
\(\text{WF} = \text{Number of workers} \cdot \text{allowance per worker} (\text{and activity}) \) |
| Reservoirs | \(\text{WF} = 0.010 \cdot \text{Surface} - 1.117 \)
\(\text{WF} = \text{Evaporation rate} \cdot \text{surface} \) |

Double counting is avoided (i.e. indirect livestock WF vs agricultural WF)

Most calculations are based on existing databases, coefficients and the like
1. Motivation
2. Water footprint of Cantabria
3. Virtual water flows
4. Integration of green water in the regional water balance
5. Precisions and uncertainties
6. Conclusions

RESULTS OF THE REGIONAL WATER FOOTPRINT

<table>
<thead>
<tr>
<th>Sector</th>
<th>Green water (Mm³/yr)</th>
<th>Blue water (Mm³/yr)</th>
<th>TOTAL (Mm³/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>1173</td>
<td>1.5</td>
<td>1175</td>
</tr>
<tr>
<td>Forestry (+ nature)</td>
<td>1502</td>
<td>-</td>
<td>1502</td>
</tr>
<tr>
<td>Livestock</td>
<td>-</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Domestic use</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Tourism</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Industry</td>
<td>-</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>-</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2675</td>
<td>89</td>
<td>2764</td>
</tr>
</tbody>
</table>
CONTENTS
1. Motivation
2. Water footprint of Cantabria
3. Virtual water flows
4. Integration of green water in the regional water balance
5. Precisions and uncertainties
6. Conclusions

RESULTS OF THE REGIONAL WATER FOOTPRINT

TOTAL WATER FOOTPRINT
2764 Mm³/yr

Green
2675 Mm³/yr

Agriculture: 44%
Forestry (and nature): 56%

Reservoirs: 41%
Domestic: 35%
Industry: 13%
Livestock: 8%
Agriculture: 1.5%
Tourism: 0.5%

Blue
89 Mm³/yr
Green water accounts for the vast majority of the regional water footprint

This is due to the prevalence of pastures and forests (pastures alone account for 50% of the total surface of the region and 95% of the agricultural land)
The water footprint is located preferentially in lesser-populated municipalities.
In truth, a lot of the agricultural water footprint can be attributed indirectly to livestock.

This is because extensive cattle livestock predominates over other types.

Cows graze freely in mountain areas – overall, there is very little fodder consumption.
Virtual water flows were computed based on trade statistics

Imports and exports within Spain are difficult to compute, since the available stats only pertain to road transport

Import and export statistics with the rest of the world are highly detailed

Virtual water coefficients computed specifically for Spain (CYII 2011) were used for products generated within Cantabria and Spain; WFN coefficients were used for products generated outside Spain
Cantabria exports three times as much water as it imports

The rest of Spain is Cantabria’s main virtual water trade partner

RESULTS OF VIRTUAL WATER FLOWS

VW Imports:
- 4.500 Mm³/yr from Spain
- 800 Mm³/yr from the world

VW Exports:
- 15.500 Mm³/yr to Spain
- 1.500 Mm³/yr to the world

Agricultural products and livestock: 33%
Foodstuffs and fodder: 67%
Rest: <1%

Agricultural products and livestock: 7%
Foodstuffs and fodder: 93%
Rest: <1%
1. Motivation
2. Water footprint of Cantabria
3. Virtual water flows
4. Integration of green water in the regional water balance
5. Precisions and uncertainties
6. Conclusions
This research involved little fieldwork

Calculations are based mostly on existing databases (official statistics, coefficients, etc)

There’s no guarantee that these databases are strictly compatible

Some double-checks were performed in order to evaluate uncertainty
For instance, our estimate for domestic consumption was checked against actual water supply data (FCC Aqualia, a major sponsor, is a water supply company)

![Graph showing domestic water footprint estimates vs measured data](image)

\[y = 1.0203x + 87273 \]

\[R^2 = 0.99605 \]
For other sectors, such as reservoirs or industry, we used several different approaches to appraise the uncertainty in our results.

Industry:
\[WF = \text{Demand} - \text{Return} = 14.5 \text{ Mm}^3/\text{yr} \]
\[WF = \text{Number of workers} \cdot \text{allowance per worker} = 12 \text{ Mm}^3/\text{yr} \]

Reservoirs:
\[WF = 0.010 \cdot \text{Surface} - 1.117 \text{ (Hardy et al 2010)} = 75 \text{ Mm}^3/\text{yr} \]
\[WF = \text{Evaporation Rate} \cdot \text{Surface} = 45 \text{ Mm}^3/\text{yr} \]
The sectors that can really be fine-tuned are those which are:
- More easily measured/estimated (domestic use, etc)
- Comparatively smaller in magnitude

However, it is a lot more difficult to estimate green water consumption in agriculture and forestry

Uncertainty can be quite high in these sectors
For water policy purposes:

- Knowing your WF helps you better understand the basin: to what extent does it contribute additional info?
- Incorporating green water into the picture
- Cantabria exports a lot of virtual water: can that be used as a negotiation tool?
- Other?
Cantabria’s water footprint amounts to about 2765 Mm³/yr

The green water footprint exceeds 99% of this figure

The green water footprint is attributable to agriculture (indirectly, livestock) and forestry (including nature)
Cantabria’s is a net virtual water exporter

It exports three times as much virtual water as it imports

Most imports and exports are related to the food industry

Most virtual water trade takes place between Cantabria and Spain
Computing water footprints and virtual water flows is relatively easy from the methodological standpoint.

However, counting on reliable data is a lot more difficult: due to the vast amount of work involved in obtaining enough data, resorting to official databases is frequent.

There is no guarantee that these are compatible for practical purposes.

Besides, we often find important uncertainties in the main components of regional water footprints (i.e. anything related to green water/vegetation).

Working with uncertainty ranges appears to be a sensible course of action.